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On vortex/wave interactions. Part 2. 
Originating from axisymmetric flow with swirl 

By T. ALLEN, S. N. BROWN A N D  F. T. SMITH 
Department of Mathematics, University College, Gower Street, London WClE 6BT, UK 

(Received 5 September 1994 and in revised form 25 April 1996) 

Following the study in Part 1 of cross-flow and other non-symmetric effects on 
vortex/wave interactions in boundary layers, the present Part 2 applies the ideas 
of Part 1 and related works to an incident axisymmetric flow supplemented by a 
small swirl or azimuthal velocity. This is with a view to possibly increasing 
understanding of vortex breakdown. The wave components involved are pre- 
dominantly inviscid Rayleigh-like ones. The presence of the swirl leads to extra features 
and complications associated mainly with extra logarithmic contributions but for the 
dominant interactions essentially the same equations as in Part 1 are found. These 
dominant nonlinear interactions must be based on azimuthal wavenumbers of & 1 in 
the case of the Squire jet with swirl. In contrast to Part 1, which consisted mainly of 
an analysis of the quasi-bounded solutions, a representative set of numerical solutions 
of the full integro-differential amplitude equations is presented, for realistic axial and 
swirl velocity profiles. The work points also to the influence of further increases in the 
incident swirl. 

1. Introduction 
In Part 1 (Brown & Smith 1996) we studied the influences of cross-flow, and non- 

symmetrical input, on the nonlinear interaction between inviscid Rayleigh waves and 
induced streamwise vortices in an otherwise planar boundary layer. The vortex/wave 
interaction involved there stems from that in Smith, Brown & Brown (1993, referred 
to herein as SBB), again for a boundary layer. 

The present Part 2 essentially asks whether the ideas on vortex/wave interaction in 
SBB and Part 1 can also be applied to swirling streamwise-vortex flows. Thus we 
consider the influence of an additional swirl or azimuthal velocity component on the 
incident motion which consists of an otherwise axisymmetric jet, say, or similar flow. 
The work is motivated by the long-term need for increased nonlinear studies aimed at 
understanding more about the phenomenon of vortex breakdown in aerodynamics and 
geophysical fluid flows, cf. the studies of Leibovich & Stewartson (1983), Foster & 
Smith (1988), Duck (1986), Brown, Leibovich & Yang (1990) and others. 

The interaction of a single helical Rayleigh wave and an axisymmetric, but non- 
swirling, flow has recently been considered (independently) by Churilov & Shukhman 
(1994). Here we specify, in addition, non-symmetric input and a small swirl in the basic 
jet flow which is taken to be in the x-direction. The main x-velocity profile is neutrally 
stable to inviscid Rayleigh-like disturbances at some station x = xo, around which our 
interest centres. Here (x, r ,  0) are cylindrical polar coordinates, x, r being non- 
dimensionalized on the typical development length of the jet, and the corresponding 
velocity is (u, u, w) non-dimensionalized on the typical jet speed. The global Reynolds 
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FIGURE 1. Schematic diagram of (a) the configuration and flow structure of an incident jet with O(e3) 
swirl velocities, near x = x,,, (b) the cross-sectional structure and radial scales showing the bulk (see 
$2), the buffer ($3) and the critical layer CL ($4). 

number Re is large and is written as e-l2 for convenience. This study of the initiation 
of three-dimensional nonlinear interactions near xo is based on Part 1 and SBB, and, 
as in effect it is seeking to highiight any differences from, as well as similarities to, 
the vortex/wave interaction balances in those papers due to the current incident 
axisymmetry and rotation, e.g. differences due to centrifugal forces, not all the details 
need to be followed through. The Navier-Stokes equations, which read 

u, + v, + r-'(v + wo) = 0, (1.1) 
N (u) = (a ,  + ua, + va, + r-lwao) u = - p ,  + P V ~ U ,  (1.2) 

J?" (0) - r-'w2 = -pr + e12[V2u - r-'(v + 2 ~ 3 1 ,  (1.3) 

J?"(w)+r-'vw = -r-1p,+e'2[V2w-r-2(w-2ug)], (1.4) 

with V2 denoting ( a ~ + a ~ + r - ' a r + r - 2 t $ ) ,  are treated for small e with x near x, and a 
given u-profile Uo(3 and swirl (w-) profile e3W,,(3 at x,,. The significance of the swirl 
velocity scaling of order 2 is analogous with that of the cross-flow in Part 1, despite 
some differences as we shall see, and we should remark that this 0 ( e 3 )  velocity, while 
small, is much larger than in vortex/wave interactions studied prior to Part 1 ,  apart 
from Davis & Smith's (1994) case of a vortex/wave interaction incorporating viscous 
Tollmien-Schlichting-like waves with cross-flow. Here also r = &with rof order unity 
for the most part since the input jet or other axisymmetric oncoming flow has typical 
thickness of O(e6), e.g. Squire's form U,, K (P + a")-' (for constant a) which is an exact 
solution of the axisymmetric jet equations. Incidentally Foster & Smith (1988) note the 
relation between Long's vortex and the Squire profile (see also Burggraf & Foster 
1977), while Batchelor & Gill (1962) suggest that the latter profile is neutrally stable for 
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an azimuthal wavenumber of unity, a result verified in this work. As in Part 1 two 
streamwise scales operate: x- I,, = s3x1 and s6X with a corresponding fast time scale 
t = s6T. The inviscid wave that starts near x = xo is dependent on both the fast ( X ,  7') 
and the slow (u,) scales, the latter being associated with initially slow growth/non- 
neutrality, whereas the three-dimensional vortex is independent of the fast scales. 
Typically a fixed frequency SZ close to the neutral value Q, is assumed, and/or 
wavenumber and wave speed z, c or position x close to xo,  c,,, ,yo. 

The scales and flow structure involved are essentially as in Part 1 and SBB but for 
the nearly axisymmetric setting (figure I). The added swirl effect however produces a 
more singular wave response ($2) than in Part I ,  at the critical layer, as well as extra 
logarithmic contributions and powers thereof, and these require some detailed 
description ($5 3,4). Despite these and other complications the governing amplitude 
equations of the vortex/wave interaction turn out to be virtually the same as in Part 
1 for cross-flow effects. In $ 5  we present numerical solutions of the full integro- 
differential amplitude equations for the Squire jet combined with a Batchelor vortex 
for the swirl profile and variations thereon. These embrace all possible downstream 
behaviours in contrast to the study in Part 1 which was restricted in the main to an 
analysis of the quasi-bounded solutions only. The present study is helpfLi1 also in 
showing the explicit appearance of the various swirl effects particularly in the buffer 
and critical-layer regions of $53 ,  4, in readiness for analysis on increased swirl. Further 
comments are presented in $6. 

2. The bulk 
The main bulk or core of the motion, as shown in the flow structure of figure 1,  has 

r = e6F with V and H of O(1) throughout. The flow-field solution expands in the 
underlying form 

u = U(,(?)+a3Ul(xl,fl+ ... +sm-3U:&+F,H)+ ... 

2: = s" y(q + 2 q x l ,  3 + . . . +em <(XI, u, 0) + . . . 

w = 2 ct;,(F) + e6 &(.XI, ?) + . . . + Ern W3(X1, r, 0) + . . . 

+E[c.'u'~'+slou("+ . . . I +  C.C. + ...) (2.1) 

+ E [ € ' Z ' ( " ) + t . ' O C ( 1 ) +  . . . I +  c.c.+ ... , (2.2) 

+ E [ t ' i ~ " + a ' " ~ ~ ~ ' ' +  . . . I +  c.c.+ ..., (2.3) 
p = poO + .. . + €'Q,(F) + c-'Q1(F) x1 + . .. + cl'qln + . . . 

+E[c'p("'+elop''' + . . . I +  C.C. + ... , (2.4) 

where C.C. denotes the complex conjugate of the preceding expression, U, is the incident 
axial velocity profile, e.g. Squire's form, and s3% denotes the added incident swirl. The 
order of magnitude, O(e3), of the imposed incident swirl here is exactly that of the 
imposed cross-flow in Part 1 .  The power m controlling the non-symmetric parts of the 
mean flow here is to be determined by matching with the buffer zone, U,, yk ,  W, are 
mean-flow components, and d k ) ,  d'), idk),  p(,) are successive wave components. These 
components are proportional to E E exp [i(aX-SZT)]. which is to stay neutral with 
wavenumber a =. a(, + e3a2 xl, wave speed c = SZ/a z co + s3c2 xl. Below, we examine 
the mean flow, which is mostly axisymmetric but with a small non-symmetric vortex 
component. in $2.1, followed by the non-symmetric wave components in $2.2. In both 
cases the bulk properties are predominantly inviscid. 
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2.1. The meanjow 
The balances of continuity and (x, r ,  0) momentum from substitution of (2.1)-(2.4) into 
(1.1)-( 1.4) are to leading order 

UIX1+ q7+r1v, = 0, (2.5) 
(2.6) 
(2.7) 
(2.8) 

uo UIXl  + v, u; = u; + F-1 u;, 

uo WZZl+ v, W i + r ' v ,  wo = w;+r'w;-T2wo, 
- r' wt = - Qi, 

provided m > 6. These control the mean-flow terms U,(K xl), V, from (2.5), (2.6) and 
W, from (2.8),  with (2.7) showing the mean centrifugal force-swirl balance. The next- 
order equations then govern the mean-flow terms U,, V, and so on, depending on the 
value of m; later analysis fixes m to be 9, which confirms the negligible role of the non- 
symmetric vortex components in the present bulk flow. 

The input axial profile is assumed to be smooth (with say Uo(co) zero, Uo(0) non- 
zero, Ui(0) zero) and neutrally stable. In what follows we are interested for example in 
the flow behaviour near the critical radius F =  ro at which Uo = co; so there 

is regular, the 4 being constants, and s = F- ro. The shear and curvature values 4,G 
here are inter-related only via the wavenumber a. in effect, as found in $2.2. The input 
swirl profile has Wo - So + sSol as F+ ro where So, Sol are constants. 

2.2. The wave components 
Working to higher order to obtain the E components, we find that the two dominant 
pressure parts satisfy the free and forced Rayleigh inviscid-wave equations 

(2.10) 

T0(p( ' ) )  = duz )  + ia, R, - 2ia0 U; A-lR, + T-'[(FR,)~+ R,,], 

R = iQ ~ ( 0 )  - u ~ ( 0 )  - ia, ul ~ ( 0 )  - ~ ( 0 )  Ulr- w 0 6  ~ ( 0 )  -pz, (0) , 

(2.1 1) 

(2.12) 
(2.13) 

respectively. Hence A = iao( U, - co), and 

0 2 1  2 -  2 

R 3 -  = iQ 2 y(0) - uo 0:) - iao u, ~ ( 0 )  - ~1 w(v(0) 0 0  - 2w(O)), 
R 4 -  = iQ2 ~ ( 0 )  - u a s ,  ~ ( 0 )  - 0 1  u ~ ( 0 )  - ~ ( 0 )  w' 0 - wo(wr) + ~ ( o ) ) ,  (2.14) 

containing the influences of swirl, non-parallelism, modulation and frequency shift. 
Depending on how the input frequency is fixed the shift Q2 may be zero or non-zero, 
and similar allowances are assumed for the wavenumber and wave-speed shifts a2, c,. 
Also, 

u(0) = - (iaop(o) + u; u(O))/A, ~ ( 0 )  = -p$='))/d, ~ ( 0 )  = - Po (0) /(FA), (2.15) 

u(') = (R, - ia0p(l)  - Ui d l ) ) / A ,  u(') = (R, - p f ) ) / d ,  w(l)  = ( R, -2- p;) /d (2.16) 

give the velocity components. 
Hence the main, neutral, wave has p(O) = (r+ e"+ r- 6-l) Po(9 say, with ê  = exp (he), 

integer n (see figure 2), and r+  - independent of ~ , 8 ,  yielding for the subsequent part 
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p ( l )  3 &*'Po Q(l) say for its e"*l contributions. To these can be added multiples of p(O). 
Here Q(l)(F, xl) satisfies, from (2.1 l), 

?Po P," FY-~QF'  = 1 7 { r + ( x l )  (RHS), +ico r>(xl)  (RHS), + m + ( x l )  (RHS),} dr", (2.17) 
m 

for the r+ part. This applies in F > ro, where y = U ,  - co vanishes at ro, while the terms 
on the right-hand side are 

(RHS), = 2P~(UlF-(Ul-SZ2/~,) U;y-'), (2.18) 
(RHS), = 2ai1(P,' Ui y-l Po YCO'),  (2.19) 

}.  (2.20) r^- y(iW,l- W,)] Pi[ - u; Wo r" + y(F w,, - W,)] 
P + 

r*Y 
r(RHS), = 2na;l 

In 0 < t<  ro the integration range in (2.17) is altered to 0 < v̂  < r, cf. SBB where a 
wall effect is also present, while the formulae for the r- parts here and below are 
analogous with those in (2.17)-(2.20)ff. The terms (2.18), (2.19) are similar to those in 
SBB, but (2.20) represents the extra effect due to the input swirl, the constant being 
a measure of the Wo velocity. 

What matters most now is the flow response near the critical radius, as s tends to 
zero. There the leading wave is regular, 

m 
Po l + z q k s k ,  (2.21) 

1 

and (2.10) in mode form combined with (2.9) requires that q1 = 0,2q, = - A ,  whereas 
q3 remains arbitrary locally, consistent with the inflexion-point-like condition 

(2.22) y 0 1  r-1 r2 = 1 2 0  - r-2/1-'n2 

where A E (a," + r;2n2). A computation for the neutral solution Po7 ao, co, ro is given in 
figure 2 for the case of the Squire jet (see also Batchelor & Gill 1962). To determine the 
subsequent-order wave we use the responses 

Y-~FP,(RHS), - a-3 ~ - ~ + a - , s - ~ + . . . ,  (2.23) 
y-3FPo(RHS), - b-, s - ~  + b-, s ~ '  + . . . , (2.24) 

from (2.18), (2.19) with (2.21), similarly to SBB, whereas (2.20) leads to the more 
singular response 

y - 3 ~ P 0  (r(RHS), - K - ~  s-4+c3s-3+ ... . (2.25) 

The dominant term here has coefficient K - ~  = 6ni3,/(rOT;3 ao). Thus (2.23), (2.24) yield 
terms analogous with SBB's (3.19), i.e. of orders 1, s, s2, s3 In 1x1, s3 in e"-lp('), with a jump 
in the coefficient of s3 across t = yo( +). In contrast, the swirl-driven contribution (2.25) 
produces the terms 

in e"-lp('). (2.26) 

Here xoL = --r: ~ - ~ / ( 3 r ~ )  is continuous, x$ = - T ~ 1 ~ / ( 3 r 0 )  is discontinuous, xZL = 
r,2 A ~ _ , / ( 6 r , )  is continuous, x$ is discontinuous, and the terms xl, x,, x3 add to those 
in (3.19) of SBB. Further, I,' denote the finite parts of integrals with respect to t f rom 
ro to co, 0 to y o ,  respectively. Of the terms in (2.26), the jumps in both x o , x 2  can be 
accommodated satisfactorily in the bulk-flow solution by adding to e"-'p(l) different 
multiples of P, for r > ro, t < y o ,  accompanied by corresponding additions to the wave 

xoL In Is( + xo + x1 s + xZL  s2 In Is( + x z  s2 + x3L s3 In Is/ + x3 s3 + . . . 
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FIGURE 2. Numerical solution for the dominant wave-pressure function ii(3 cc P,/Twhen n = 1 ,  in the 
case of the Squire-jet normalized profile U,  = (1 +?)-'. The wavenumber is a, x 1.461, while 
the dashed lines indicate the critical level Y, (see (2.22)). The results are from extrapolation of the 
solutions obtained on grids of 501 x 0.02 and 1001 x 0.01 in F. Solutions appeared to be unobtainable 
for In1 =+ 1, cf. Batchelor & Gill (1962) who showed that there are no neutral solutions for In( > 1 and 
obtained CL, x 1.46 for n = 1. 

velocity components. The logarithmic terms associated with xoL, x Z L  are found later to 
jump by i z s g n q ,  adding to the xo,x2 jumps, these and other logarithms being 
smoothed out in the viscous critical layer of 94. Therefore the major influence of (2.26) 
is its extra jump contribution at order s3, via x;, supplementary to those in SBB's (3.19) 
by an amount G(G: - G;) r(xJ say. Here G l  - G; is complex, the real part arising from 
(RHS), in (2.20) and the imaginary part from q3 in (2.21) in the different multiples of 
Po added to &'p(I) in r > ro, r < y o .  Other extra swirl-induced effects including 
logarithms [e.g. dl) cc In Is/ due to (2.26)] are also present but discussion of them is best 
deferred until 34. Likewise, higher-order effects such as in the induced E 2  nonlinear 
terms play a negligible role at this stage. We turn next to the buffer- and critical-layer 
responses. 

3. The buffer 
This zone lying astride the critical layer is associated mostly with viscous-inviscid 

changes in the mean vortex components. The buffer has r = e6(ro + e3/2 q) with q of 
order unity, so that s + c3/' formally, and on account of (2.1)-(2.4) ff. the appropriate 
expansion is 

u = co + 6 3 \ 2 4  r, + € 3 ( 4  Y,2 + c, XI) + € 9 ' 7 4  q 3  + cT3 x, r,) + €6Uq + . . . 

0 = €6{yo+€3/2y, r , + € 3 U 2 +  ... +E€[5,+ ...I+ c.c.+ ...}, 
w = 6"6-380 + €-3/2CYo1 r, + (f302 y," + x, 8,) + €3'2W0 + . . . + E€-l/2[Go + . . .] + C.C. + . , .}, 

+Ee11/2[u"0+63/2u"1+ . . . I+ C.C. + ... , (3.1) 
(3.2) 

(3.3) 
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p = Po, + . . . + @qao + P q o l  r, + €9(4,, Y," + x, q,,) + P / 2 ( q o 3  Y,3 + x, r, iO3) + . . . 
151 

+ Ee7[p", + e33iZp1 + e3 (In c ) p 2 L  + e3P2 + eg""p3 + e6 (In e) j i4L + e6p4 

+ (ln ~ ) p " , ~  + .515/2p"a + . . .] +c.c. + . . . . (3.4) 

Here the wave terms p12,p4 grow like (1, r,") In I to match with the wave 
forms in $2, whereas yo, y l ,  S,, S,,, S o 2 , P 2 L , j 4 L , j 5 L ,  etc., are constants. In particular 
yo = K(r , ) ,  So = W,(r,). The vital contributions in (3.1)-(3.4) are uq, v,, wo for the vortex 
and p s  for the wave part, as is seen below. 

at large I 

3.1. The vortex components 
The governing equations with (3.1)-(3.4) holding yield the viscous system 

v2yl + r;'wos = 0,  

(c,  z., + rilSn 3,) ~4 + 0, = u 4 y 1  yl,  

( ~ 0  ?XI + rilSn ae) wn = way, y 1 3  

for the mean-flow vortex components apart from polynomial contributions. In 
comparison with SBB, no extra pressure gradient enters from the centrifugal forces for 
example but there is a new feature in the S, derivative terms due to the swirl present. 
These are analogous to the cross-flow contributions of Part 1 and (3.7) above is directly 
comparable with (3.14a) there. The vortex system (3.5)-(3.7), which is subject to the 
condition that w, vanishes at large 151, is forced by a jump condition on awo/i3y at 

= 0 f , due to the nonlinear wave effects within the critical layer, in the form 

[wny$l = F(IPnoI7; (3.8) 

see §4 on the function F. The back-effect of the present vortex contribution is also 
central to the nonlinear interplay because, in turn, the vortex influences the wave parts 
below through vortex/wave interaction. In addition the property that v, is O( 1) at large 
IT/, from integration of (3.5), fixes the power m in $2 to be 9. 

3.2. The wave parts 
From (3.1)-(3.4) the successive wave components satisfy the following balances, which 
are predominantly inviscid still. First, 

%?((ulo, Co, G,) = ia, f i 0  + Gnyl + rolGoo = 0, (3.9) 

~ ( 2 1 , , G 0 , ~ , )  = 4 Y,ia,21,+C,~+iaop", = 0, (3.10) 

Fou, = 0% (3.1 1) 

(3.12) O(iijo,p",) = 4 r, ia, G,, + r;lpno = 0. 

Hence the solutions for the r+ contributions have 

21, = n2r+/(aS r i  & q) 6, 6, = -ir+ A/(a ,  r,) 2, 

f i n  = - nr+/(a, Y, 4 5) g, p", = Y+(x,) 6, 

(3.13) 

(3.14) 

matching with the bulk-flow solutions, and likewise for the r- contributions. 
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Secondly, we obtain
%?(S,,  i& G,)  +  r;lfi, - ri2 q iG’os  = 0, (3.15)

%((u”,,  F,,jj,) + (4 Y,2  + c,  xl) iol, 21, + E, 4 F + LZ((zl,)  = 0, (3.16)

PlY,  = 0, (3.17)

O(Gl,&)  +(G q’z+ c,x,)  ia,  G0 + L?(G,,) -T;‘Y&~  = 0, (3.18)

where the operator 8 - (c, ?&.,  + r;Q,,  a,-aFI).  These fix (ii,, gl, fiI),  with p”, being
identically zero.

Thirdly, (S,, B,,  G2,p”,)  are controlled by

V(ii,,  8,,  I?,)  + 21,,.  + r;%,  - ri2 q 8, - r;‘q Gls  + r;”  Yt G’os  = 0, (3.19)

!r (ii,, iT2,p”,)  + r,  q u”o,l  + . . . + B (22,)  +joz.  = 0, (3.20)

jizy, + 4 q ia,  8,  - 2r;‘6, G0 = 0, (3.21)

o(62,p”2)+  . ..+S(lF1)+ . . . = 0; (3.22)

here and below only newly appearing types of terms are shown explicitly in the main.
So far all the terms encountered are in a sense continuations of those in the bulk. We
notice especially that the centrifugal term in (3.21) requires p”, to be logarithmic in Y,,
in view of the G,, solution in (3.14),  merging both with the bulk response of $2 and the
critical-layer response of $4. Again, swirl and other effects are gradually intruding in
(3.15F(3.22), compared with (3.9~(3.12).

Fourthly, the induced vortex components of $3.1  make their presence felt in the
controlling equations

%?((u”,,6,,~,)+...  = 0, (3.23)

X((21,,  v”,,p”,)  + 24, ia,  21, + co udyI  + r;lGO  uJB  + . . . = 0, (3.24)

p”3y,+rl Y,ia,u”,+ . . . = 0, (3.25)

@(~?~,p”~)  + u4 iol, G0 + . . . = 0, (3.26)

for (u”,,  B,, fi3,p”J.  The new vortex effects as shown explicitly here in the axial and
azimuthal momentum balances involve the unknown velocity uq,  which is governed by
(3.5~(3.8), cf. Part 1.

Higher-order terms are still needed however in the radial momentum balance,
specifically

p”5yI+uqi~0f?0+~ Y,iol,v”,-2r;‘(6,~‘,+w0~J+...  = 0, (3.27)

which shows new vortex (uq,  w,,) and swirl (4,)  influences. This pressure p”, helps to
control the crucial jump across the buffer and critical layer. Combining (3.27) with
(3.23)-(3.26)  and earlier equations, and retaining only those terms that are affected by
the induced vortex flow and swirl, we obtain the equation

iz IpLyly,-2Y;1~~yl = -2Gqy,r-r;l  A+
i

‘On
rf  01~  r, Y,2 1 +

2nr-[Goyl/  q - 3*,,/  y,“]

4 a0 4

+ 2G,  r-[/i + 2n2/ri  + 48,  n/(ri  cc0  c r,“)]
45 (3.28)

for the corresponding r, e” part p”, of p”,.  Here i& 8,  are the E2 (forced) parts of uqr w.
(see (3% ~1ex aining the presence of the r- contributions in (3.28). Our main concern
now is with the O(Y,)  terms at large ) YJ, since only these affect the jump (J”>  in the
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O( Y,") part of jj5 across the entire buffer required to match the O(s3) jump described in 
92.1. From integration of (3.28) across the buffer, and then equating f w i t h  the jump 
described after (2.26), the balance 

r-($-A)%+(D+-D-) = - { x l r + ( G ~ - G ~ ) + i c o r ~ ( G ~ - G ~ ) + n r , ( G ~ - G ; ) }  4' 
CO Y O  

(3.29) 

is produced. Here (D+ - D-) denotes the jump across the critical layer (for % --f 0 +_) as 
described in the next section, while 

(3.30) 

given that z24Y,yl is zero at r, = 0 f . The extra swirl effects in (3.28) for instance are 
found to add nothing as far as the jump above is concerned, thus leaving (3.29) 
essentially the same as SBB's equation (5.1), apart from the additional n term on the 
right in (3.29). 

4. The critical layer 

e6(ro+c2Y) with Y of order unity, and so 
In the critical layer the buffer coordinate r, essentially becomes O ( P ) ,  leaving r = 

u = co + €24 Y + €3C2 x ,  + € 4 4  Y2+ €5U0 + €6G1 + e'G, + . . . , 
v = &{yo + €D2 + €%, + . . . j, 

w = €"€-38, + s-lw, + w1 + . , . j, 
p = p o  + 8 q o o  + €'& + €*p, + €gp4 + €lop5 + . . . , 

(4.1) 
(4.2) 
(4.3) 
(4.4) 

from 93. Additional terms, e.g. in In c, should be included but they have only a passive 
effect here as in SBB. Matching requires among other things that, at large I YI, a,, - 
g3 x, Y,  uOE cc Y-l ,  iilN N & Y 3  + u4 (at = 0 +), vz is 0(1), t ~ , ~  N y 1  Y ,  w0, - Sol Y, 
woE cc Y-', wlN - S, xl, w,, - So, Y 2 ,  w , / , ~  - w0 (at r, = o+), w,, - r, aw,/ar, 
(at q, = 0 +), where the subscripts N ,  E denote the mean and fluctuating parts of the 
velocity and pressure, respectively. The constant c3 = 6c;lG + ( 2 4  - r;'<) (r;l -yo), 
and the values at & = O f  are due to the induced vortex (93.1) in the buffer. 
The resulting balances given below confirm that the wave part now responds in a 
viscous-inviscid fashion whereas the vortex part is mostly viscous. We need to proceed 
through several orders in the governing equations. 

4.1. Continuity balances 
From substitution into (1. l), and with @(u, w) referring to au/aX+ r;' aw/a@, the 
successive continuity balances are 

F(Go, w,) = 0, (4.5) 
(4.6) 
(4.7) 
(4.8) 
(4.9) 

Figl, wl) + c, + u , ~  + r;ly0 = 0, 
T(ii,, w2) + i~~~ + r;'vz - r i2  YwOe = 0, 

F(G,, W J  + u~~~ + vSY + rg1ij3 - r i 2  Y(y,  + w10) = 0, 
Tic4, w4) + ul,, + i~~~ + r;ltJ4 - r;' Y(U, + wZe) + r ;3~2a0e  = 0, 

F(uS, WS) + Gzzl + B,y + r;%, - r;' Y(V, + w , ~ )  + ro3 Y2(yo  + wle) = 0, (4.10) 
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from orders e-l to e4 in turn. Mean-flow, non-parallel and rotation influences are
observed to enter play gradually. The main wave is controlled by (4.5) but we need to
proceed to the wave part in (4.10) also, while mean vortex effects first appear in (4.8).

4.2. x-Momentum balances

Here (1.2) yields the governing equations, from the orders 1 to e6 respectively,

co  c,  + y.  q = 2r,  + r,lT,, (4.11)

x0 = 0, (4.12)

!q+r, Yc,+FI&+2y,r,  Y = -r;2Y~r+2r,‘T,  Y, (4.13)

z2 + Fl @I + c;  x, + r, Y2iiOEX  + y.  izoy + 2iT, r, Y = Y;liToy, (4.14)

fz3 + r, Yzr,,l + Fl ii2 + r, Y2(u,,, + c2>  + zl, zs,,,  + y. ii1y + 2D3  r,  Y + &, l&J

+ rO%G,  Eoe - r02  Y6,  U,,  = --pZz,  + r;Qily + ri3 Y2&  - 2ri2&  Y2, (4.15)

fq + r,  yq,,  + 91 u, + c2  x, q)z,  + 4 Y2u,E, + q)@lEX + c2>

+ z7,  %EX +yo~2y+~2~~u+~~~~y+2~44  Y+r;l(~,U~,+W,C&J

- r02 YS,  i& = -pzz, + r;1iZ2u  - ri2 Yi$,  + r;2UOse  + iZOOEXX, (4.16)

!q+rl  Y~22z,+~~~4+c2x1ulz,+~  Y2(iT3,,+zios,)

+eJUZEX+%@mY +c2)+u2  u~~‘y+yoiz~y+~2iT2y+~~  iqy+c4i&y

+ 2?& & Y+ r;‘(W, U2s  + W,  i?& + W,  UOe)  - ri2 Y(S,  U2*  + W,  UOO)  + ri3 Y’S0  QOO

= -p4z,  + r;‘C&  - r;2Yz71y + (2ri3G - ri4rl)  Y3  + r;2i71ss  + CIEXX, (4.17)

with sk for k 2 0 denoting r,(  Y&&&Z+ Q,,) + i?&+2E/aX-~2u,/i?  Y2. The operator
FI  is (c, xl a, + c0  CIz,  + r;‘&,  a,). The mean terms in (4.11) agree with the mean balance
obtained in 0 2.1. The subsequent balances again show the influences of non-parallel,
mean, rotation and swirl forces entering, with the main wave in (4.12),  the final wave
part to be examined in (4.17),  the input mean flow present in (4.1 l), (4.13)ff.,  and the
induced vortex in (4.15).

The terms z?,T,,p,, in (4.15) provoke an extra logarithmic response as anticipated
earlier but this produces little impact on the major vortex/wave interaction eventually,
as we shall see.

4.3. r-Momentum balances

From (1.3) we have the successive balances, at orders c-l through to e4,

co,  -r;16fiTo)  = -@2y~&Y~~4Y)~ (4.18)

-2r;‘S,W,+r;2Y6~  = -&, (4.19)

r, yc2,x- 2r;Q,  WI = -psy + C2yu, (4.20)

r, YC3EX + Fl  c2 - ri1(26,  W,  + w:)  + 2ri2  YS,  w,, - ri3 Y26i = -& + zi3yy. (4.2 1)

The main wave result is simply that pz is independent of Y, and likewise for p4, while
the final wave part needed is in (4.2 1). The first non-trivial Y-dependence arises in (4.19)
from the swirl effect S,,  which also promotes additional Y-dependence at higher orders.
The balance in (4.19) produces an interesting logarithmic feature which is addressed
subsequently.
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4.4. &Momentum balances 
The balances resulting from (1.4) at orders 8 through to 2 are, with 0, denoting 

0, = 0, (4.22) 
O1+F1w0 = 0, (4.23) 

(4.24) 

r, Yaw,,/ax+ r;l apk+2/ao- a2w,/a yz (k  2 o), 

@,+Fl IT,+& Y2WOEx+ yoWor+r;1y06n = r;2Yp,8+r~1woy-ry02Bo, 
0, + r, Ywozl + F, w, + r, Y2WlEX + uo W O E X  +yo  WIU + D2 wou 

+r;’(W, wos+60C2)-r;2Y80 Woo = r;2Yp3s+r;1w,y, (4.25) 

6, + 4 y @ l x l  + F1 w 3  + c2 x1 @ox, + Y2w,Ex + (go WlEX + W o E X )  

+ y o ~ 2 ’ s y + ( ~ , ~ , y + ~ 3 ~ n y ) + r ~ 1 ( ( ~ , ~ ~ ) s + S , ~ 3 + ~ o  ~ , ) - r ~ ~ Y ( 6 , ~ ~ ~ + y ~ 6 , )  
= r o 2 Y p , o - r ; 3 Y Z ~ 2 e + r ~ 1 W 2 y - r ; 2 ( Y ~ , y - W n H e +  W,)+~Y;~YS,+ w ~ ~ ~ ~ ,  (4.26) 

6, + 4 ywzz, + F1 m, + c, x1 wls, + & Y2(w,EX + wozc,) + (go  @2EX + 
+ ~ r ,  woEx) +yo  w , ~  + (v, w~~ + V,  wlr + V, woU) + r;’((w, w ~ ) ~  
+ w1 wle + 8, V ,  + yo  w1 + c2 w,) - r;’ Y(6, wZo + W ,  woo + c2 8,) + ro3 YzSo woo 

= ~ ; 2 Y ~ s H - r ; 3 Y 2 p 3 e + r ; 1 ~ ~ y - r ~ 2 ( Y ~ , y - ~ l o H +  W , ) + W , ~ ~ ~ .  (4.27) 

The dominant wave equation is therefore (4.22), the dominant induced-vortex 
equation i s  contained in (4.25) and the final wave equation of concern is (4.27). 

4.5. Solutions 
To solve (4.5k(4.27) for uoE,wOE and so on, we combine the x- and @-momentum 
balances, along with those of continuity, to find the skewed shears Q = E / a X +  r;’ 
80. The fluctuating parts are split as tioE = EZOE+c.c., etc., allowing aX,a, to be 
replaced by ia,, in in most places, e.g. in F,. 

First, (4.5), (4.12), (4.18), (4.22) yield the dominant wave and mean solutions as 

- 
i~~~ = -ia;lr;lAFZE, E , , ~  = g3x1 Y,  w,, = &,, Y ,  = p2N = 0, (4.29) 

where the function L?( Y )  satisfies 2”- B Y 2  = 1 with L? - - B-lY-l at large ( Y (  and 
can be expressed in integral form as in SBB. The constant B = r, ia, and j72E = p”, as 
given in (3.14). 

Secondly, a similar procedure is found to give the solutions 

(4.30) 
(4.3 1) 

with ia, C, = A,,, B, = - F1PzE n 2 / ( &  a: r t ) ,  (4.32) 

from (4.6), (4.13), (4.18), (4.23). Here matching with the buffer determines the function 
AlE(x1, 0) (and hence C,) to be zero. Third, and after matching again, 

- - QIE = A,,, ZilE = B, L?‘+ C,, WIE = in2’/(Br0), 
- - - 
U3E = ~ 3 , q  = 0, = 4 ~3 + U4(x,, o , ~ ) ,  w,, = 6, x,, 

QzE = A 2 E + q 2 2  L?”, 9 2 2  =p,E/ (3Br: ) ,  3 4 E  = O, (4.33) 
(4.34) 

u2N = v4x1 Y 2 ,  wzx = so, Y 2 ,  C2’v = 0. (4.35) 

- - - 
W2E = f l 2 E  + v 2 2  Z”+ c 2 5  d p v ,  u4E = t 4 E  Y+2q,,L?’> 
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Here the constant cr4 can be related to the constant < in (2.9), and crzE, cr22, cr2,, tgE are 
functions of x,  and 0 and are given in the Appendix. The function AZE(x1, 0) may be 
determined by matching with the buffer solution and is found to involve the constant 
q3 in (2.21). Fourthly 

- Q3E = q 3 0 9 + + 3 3 2 ? ” ’ ,  iQ3E = ~ ~ , 9 + ~ 3 3 9 ’ ” + ~ ~ ~ ~ ” i - 2 2 6 0 r ~ 3 n 2 ~ ~ , A ,  (4.36) 
- 
B5E = 28, r;2inp2E J 2’ d Y,  E 5 ,  = (A/B)T,, + t,, + t,, 2’” (4.37) 

with the function A and the more significant coefficients being shown in the Appendix. 
Fifthly, 

QdE = -44, + B ~ E  Y+ 9 4 1  9 + 944 2? iv + 947 9 vii ; (4.38) 
again see the Appendix. 

Sixthly, and lastly as regards the wave parts, we find the equation 

Q ~ E Y Y Y - ~ Y Q S E Y  = RHS5 (4.39) 

for the effective vorticity Q5EY. The detailed expression RHS,, which is long and 
complicated, is available from the authors. The only terms within it that matter with 
regard to matching at large I Y (  and fixing the crucial jump condition are independent 
of Y. The total of these terms, x say, is also given in the Appendix; the remainder of 
RHS, is a sum of terms each proportional to 9(‘) for some r 2 0. Since 2’@) in RHS, 
leads to a multiple of 2‘@) in Q5E all of which tend to zero as I YI + 00, the only 
contribution to the logarithmic behaviour of Q 5 E  at large ( Y (  is derived from x to be 

- E1xS 9 d Y. (4.40) 

This form implies that the usual quasi-linear phase shift holds, namely 

In 1 Y 1 + In Y + i(sgn 4) x (4.41) 

as Y changes from large and negative to large and positive, despite all the extra 
complications in (4.33)-(4.39). The above therefore conforms with the result for 
(D+-D-) essentially given in Part 1 and SBB. 

Concerning next the induced vortex motion, the balance involved is in (4.25), namely 

[ - ia 0 Z OE %tE + i f z E  R$Ey + Y;%-,, @~,J + C.C. = wBNYY,  (4.42) 
from the vortex terms independent of E. Upon insertion of the wave expressions (4.28), 
(4.29) in the left-hand side of (4.42), and then integration in Y, the jump [iij3NY]?m is 
obtained. The result is that anticipated in the buffer-vortex problem of $3.1, with the 
forcing function F in (3.8) being a real multiple of the forcing function in Part 1. 

The final point here is on the appearance of extra logarithmic factors relatively early 
in the procedure and, later, logarithm squared terms, stemming from the swirl 6,. These 
are of interest although they have negligible effects on the major results at the ends of 
the previous two paragraphs, owing to cancellations. Thus 33E in (4.36) and hence Z 3 ,  
both contain O( Y-l In I Y ( )  terms at large 1 Y (  (due to the function A) even though they 
combine to leave Q3E non-logarithmic, in (4.36). Along with that, j?,, cc 6, In 1 Y J  at 
large 1 YI from (4.37), yielding a finite jump effect in p5E there (cf. (4.41) and hence in 
j 2  across = 0 & in the buffer of $ 3.2. The logarithm in p5E is consistent also with the 
logarithmic behaviour ofp, locally and thence with the O(6, In IF- rol) part ofp(’) in the 
core of $2.2. The corresponding jump effect in p ( l )  forces multiples of do), do),  w(O),p(O) 
to be added to dl), dl), d 1 ) , p ( l )  (as noted earlier in $2) which match exactly with the 
jumps induced in Z3,, B,, for example. Moreover the extra logarithms in 7V3E, Z3E,p5E,  
s,, add a number of terms to the central equation (4.39) for QSE which individually 
- 
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yield (lnIY1)2 growths in &; however the cumulative effect is found to cancel 
out, leaving only In I YJ growth as in (4.40) and hence the result (4.41). 

5. Solution properties for the Squire jet and related profiles 

governing equations take the form 
As a consequence of the swirl contribution G,f - G; described near the end of $2, the 

CG+Ai,[; t* + t * ds+(Bx, f F )  t+ ~ = 0. (5.1 a, b) 

Here the notation is adopted from $3 of Part 1 with t + ( x l )  being the unknown scaled 
amplitudes and primes denoting derivatives with respect to x,. The constants A ,  B, C, 
Fare such that A is real and the others complex. Equations (5.1) may be compared with 
(3.16) of Part 1 ; the latter have k F replaced by F+ where F+ contain a common wall- 
layer contribution not present here, and the subsequent analysis there was restricted to 
a cross-flow for which only the real parts of F, differed in the two equations. 

The coefficients in (5.1) have been calculated for the Squire jet profiles UO(g = 
1/(1 +r")z with n = 1;  see figure 2 and caption. As a representative swirl profile the 
Batchelor vortex W,(q = (1 -ee-")/Pwas chosen. If a rescaling of t, - and x, in (5.1) is 
adopted so that A = 1 = /B( = IC( the coefficients are found to be 

B = - 0.219 + 0.9761, C = - 0.992 + 0.123i, F = 5.22 x + 0.8631. (5.2) 

Numerical solutions of (5.1) have been obtained using central differences and Newton 
iteration. Figures 3 and 4 show that, for the choice of coefficients in (5.2), the ultimate 
behaviour depends on the form of the initial conditions. In figure 3 (a)  for which x, = 0 
and t, = 0.1, t- = 0.2 at x, = 0, the moduli of the amplitudes decay exponentially to zero 
at large positive xl. However in figure 3(b), for which t+ = 1.0, t- = 0.75 at x, = 0, 
and the inverse amplitudes are plotted, the initial values are sufficiently large for the 
nonlinear term in (5.1) to come into effect and a terminating singularity is encountered 
at a finite value of x,. This is similar to the singularity in SBB and has t+ M t- z 
a , / ( ~ , ~  - x ~ ) ' + ~ "  as x1 --f x, - 0, with the real number cr and complex a, related by 
C( 1 + iv) + A(aoI2 = 0. 

It is instructive to investigate other possible downstream behaviours of solutions to 
(5.1) when the signs of various coefficients in (5.2) are changed. A change of sign of all 
of B, C, F and the same initial conditions as in figure 3(b) results now (see figure 4) in 
a solution eventually dominated by Gaussian decay similar to that of figure 3(a). A 
change of sign of the non-parallel term B only, together with the initial conditions of 
figure 3(a), leads to a terminating singularity; this case is shown in figure 5. 

Possibly the most interesting situation occurs if the signs of both C and Fin  (5.2) are 
changed. This choice results in the bounded or quasi-bounded response, as examined 
in SBB and Part 1, for a wide range of input conditions upstream, confirming previous 
assumptions about the starting conditions for such solutions. Here ' quasi-bounded' 
refers to solutions which persist indefinitely far downstream on the present scales with 
continued or continual nonlinear interplay occurring. An example, with the same 
conditions as for figure 3(a), is shown in figure 6. 

The above discussion, for variations in the constants derived from a particular 
choice of the two profiles, axial and swirl, illustrates the possible downstream 
behaviour of perturbations initiated at the position x, = 0. Figure 3 (a,  b) demonstrates 
that whether the termination is in Gaussian decay or an algebraic singularity can 
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FIGURE 3. (a) The moduli of the amplitudes with constants as in (5.2). Here t+(O) = O.l,t_(O) = 0.2. 
(b) The inverse of the moduli of the amplitudes. Here t+(O) = 1.0, t_ (O)  = 0.75 but otherwise as in (a). 
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FIGURE 4. The moduli of the amplitudes with initial conditions as in figure 3 (b) 
but a change of sign of B, C and F, 
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FIGURE 6. As in figure 5 but with a change of sign of C and F rather than of B. 

depend on the initial conditions. Quasi-boundedness, as in figure 6, seems to be a 
consequence of the choice of coefficients, in particular their relative signs, and to occur 
regardless of the input data. Increase in 1PI corresponds to stronger swirl and for the 
quasi-bounded situation forces transition to enter sooner, in the spatial sense, if 
transition is interpreted here as nonlinear interactive behaviour ; increase in the input 
amplitudes has a similar result. A final comment concerns the effect of the non-parallel 
term Bx, in (5.1): it controls the Gaussian decay in figures 3 ( a )  and 4, and determines 
the envelope in the quasi-bounded solution of figure 6. 

6. Further comments 
The study of gG2-5 implies that the resultant nonlinear governing equations for the 

vortex/wave interaction in the present context of slowly swirling near-axisymmetric jet 
flows or longitudinal vortices are in essence the same as those in Part 1 where relatively 
slow cross-flow in a near-planar boundary layer is addresed. The additional effect of 
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the swirl is felt mainly by the corrections etc. in (2.1)-(2.4) to which have to be 
added multiples of discontinuous at the critical layer, to accommodate the 
stronger singularity in (2.25). Despite these complications, which introduce extra 
logarithmic terms into the details of the analysis and would be significant in any 
quantitative comparisons of the wave profiles predicted here and measured profiles, the 
form of the resulting equation is the same. To make the identification it is necessary, 
as explained in $5 ,  to set the wall-layer effect of Part 1 to zero and to consider a general 
cross-flow profile. The reason for the similarity of the final equations in the two 
situations is that the primary ingredients of the vortex/wave interaction, namely wave- 
squared forcing of the induced vortex flow as in $3.1 and in turn the mean vortex 
influence on the wave response as in $3.2, are unaltered between Parts 1 and 2. In $ 5  
we have presented solutions of the full integro-differential equations, a task not 
undertaken in Part 1 which was mainly devoted to an analytical study of the quasi- 
bounded solutions. 

Some other points of relevance here are equivalent to those in Part 1, including the 
influence of increasing cross-flow (and here swirl) and the many solution paths 
available depending on the coefficients in the amplitude equations. The present study 
shows more of the detailed appearance of the swirl effects in the buffer and critical 
layers. It is likely that a slight increase in the typical input swirl velocity, above its 
present O(c3) level, and/or change of the amplitudes and scales, will substantially alter 
the overall flow structure in an interesting way, taking us more towards the realistic 
situation of O( 1) swirl velocities. This may provide a basis for alternative descriptions 
of incipient and eventually catastrophic vortex breakdown, both phenomena of 
considerable interest and importance. 

T. Allen, S.  N .  Brown and F. T. Smith 
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Appendix 
The function A! is defined by 

A!"-BYA? = J2Z (A 1) 

and the coefficients in (4.34)-(4.38) that are required to calculate x in (4.40) are given 
by 

crzE = (3 - 2r~~r;'A-l) inj?2E/(2Br3, 
gZ2 = ( B - l F ;  +yo - 2r;l+ 2n'~;~A-l) in74E/(2Br0), 

crZ5 = (1 - 2 r 3 ~ ' A - ~ )  inFZE/( 10B2r;), 

q3, = [n'(r;lF, - 4 a,,) -26, inA]&E/(Br;), 

(A 2) 
(A 3) 
(A 4) 

= - A 2 E - a 3 2 E / ( B r O ) ,  (A 5 )  

(A 6) 

(A 7) 

(A 8) 
(A 9) 

[(yo1 - 2n2r;3/1) Fl - 2( 9 + a,, r;' a,)] in&, (aol + 6, r;l)ApZE, 

t , E  = [ q 3 0  - 9, A2E - (ia, g3 X, + Y,'(S,, + 8, r;') a,) E2E - ia, a,.J,J/B, 
B4E = - [2n'B~r;~ A-1A2E + 6ia, 4 Z i z E  + (A' +  in'^;^ - 3n4r;6A-1)p',E]/B 

B + 2Br, cr30 = 

where, in (A 7), 9 = ia, c3 x, + & 3,. - 6, r;' a,, and Fl is defined below (4.17). 
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The expression for x in (4.40) is 
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[y04S,( 10n2 - 9r$4) + r;33,1(2n2 + Y ~ A )  + 2/13,,] c ? s ~ , E  - 23 r-2 a A + o n o 2 E .  (A 10) 

This expression for x may be compared with the right-hand side of (B 7) of SBB for 
which the swirl was zero so that 8, = a,, = S,, = 0. To make the identification we also 
let r,+ 00 in (A 10) keeping n2/ri  fixed, in which case (A 10) reduces to the two (first) 
terms involving E z E  and Fl becomes c, "., + ia, c, XI.  In the present theory it was not 
considered necessary to carry the term ia, c, x1 in this operator although it was retained 
in SBB where in addition it was assumed that a, c, + a, c, = 0 so that the perturbations 
had a prescribed real frequency. Also, in SBB it was assumed that r4 = 0, as the initial 
aim was to construct a theory that would match downstream to that of Hall & Smith 
(1991), although as explained in Part 1, this assumption may easily be dropped. Hence 
in the situation considered in SBB, x in (A 10) reduces to 

3 r n  

(A 1 1 )  
- x = - 6co 4 ax., c,,, 

which is the right-hand side of (B 7) of SBB (when divided by ia, to relate g5E to ZisE) 
when the relations 4 = 6, and 6G = 6, are noted. 
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